
Galaxy realtime quality rendering

October,01 2013 Fabrice NEYRET

ANR/veRTIGE (RSA-Cosmos, Obs.Meudon, INRIA)

facts:

- ~3.10¹¹ stars
- bulb
- disc of old stars (field stars)
- arms: density wave
- young stars (different traj.) clusters, ionizing, SN...
- fractal dust clouds $(1 \rightarrow 10^3)$
 - = nebula if lightened or ionized
- *imager:* (Hubble) 48 filters (large to peak)

List of requirements:

(end: dec 2014)

- •view from far
- view from inside
- continuous view from earth to nearby
- change imager filters
- animated galaxy (using GALMER SPH simulation)
- amplify from astronomy statistics + ref images
- quality rendering
- strong realtime on highres skydomes (planetarium)

Some Challenges:

- mass of data
 - astronomic objects
 - SPH simulation
- all transparent
- sub-scales count
- all spectral

- (sources, extinction, scatter, ionization, filter)
- non-linearities everywhere
- ranges of intensities + scales
- fusion of data
- continuum to discreet
- interpolations
- knowledge from different fields, to revisit, non-complete

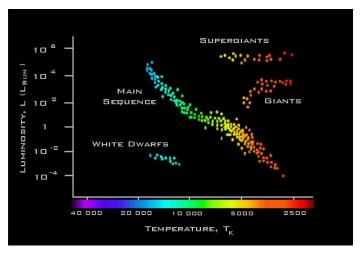
(won't fit memory & CPU)

(> 3x 10 ⁶ partics. NB: Still running)

(no star-star masking!)

(appearance filtering)

(amplified SPH + star catalog)


Tools:

- **GigaVoxels** (+ for mass of data, LOD, transp, GPU)
- astro tables :
 - HR diagram: distrib P(L,T,Z,a)
 iso-Padoue: distrib L,T,r(Z,a),
 IMF, ICMF: distrib m stars resp/ clusters

• empirical eqn :

extinc(λ), *spectra* (stars, scattering, ionization)
 distrib Z,a,m(xyz) for star field layer

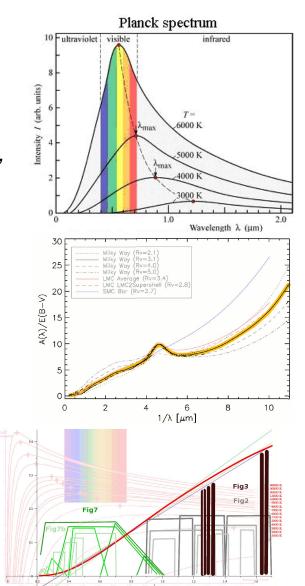
- SPH particles: (~30-40 blended)
 - $\circ~$ 3 layers : old stars field, gaz + young stars, black matter
 - Mgaz, Mstars, distrib(age,Z)

Addressing some challenges

- Spectral aspects
- non-linearities (extinct(λ ,L) per se...)
- interpolations
- Transparency vs optimizations
- Filtering & LOD (pixel = star + dust mixture)

1: Spectral aspects

• a priori knowledge


Iin vs log vs log-log ; λ vs $\frac{1}{\lambda}$ vs f; MKSA vs "column/Vsun"

- filters known at run time
 → in filter window; proj on func base
 peaks: separately, if needed
 Filter weight: Po or P1
 Source: ~ P1 to P3
 Extinction: e^{-cst}/_λ; ~ P1 or P2
- \rightarrow F.S.E : Pn or Pn. $e^{-f(\lambda)}$

easy

λ

• store + render coefs (not spectra)

2: Filtering & LOD

not 1 star, but:

• star mixture in pixels/voxels

 $\int_{xyz} \rho(xyz) \int_m \int_{p'} \int_{f \in filtre} W(f) \ \langle I.S_{BB} \rangle(f, LTr_{(m(p'); a(z,p'), Z(xyz))}) \ df \ dp' dP_{IMF'}(m) \ d_{xyz}$

in facts,

• star + gaz extinct mixture

•	"	"	+ emis	sions	mixture	
•	"	"	"	+ inhe	omogeneous	gaz (so long 'density')
•	"	"	"	" + gaz-star correlation		

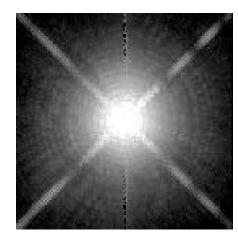
 \rightarrow Master 2013/2014 subject :-)

3: GigaVoxel framework

- high-level: octree of particles
 - phys data
 - 3 layers : gaz, clusters, stars (more compact + higher res)
 - produced from : Galmer' CPU particles + filters
 - o resident
- *low-level: octree of voxel bricks*
 - for rendering
 - o 2 layers : "mixture color" + "cloud opacity"
 - o produced from : GPU particles + eqn("2:filtering")
 - o transcient

Transparency vs optimizations

• Occlusion by dust:


dark clouds are not iron walls stars intensity not in [0,255] so: never sure light won't peak through !

\rightarrow estimate before draw/load voxels:

- min-max Lum : RenderDetails(loc) iif trspcur*Lmax(loc) > ε
- min-max Extinct : RenderDetails(loc) iif trspcur*trsp △ (loc) > ε
- stronger a priori knowledge ?

• Occlusion by stars:

stars << pixel... but large disk of saturated pixels \rightarrow let's use it ! clamp(10^{10} . $\delta_{star} * PSF_{captor} * CircleOfConfusion_{optic}$)

Interpolation and non-linearities

find non-linear blending or reparameterize for X-lin vars

- Blending(spectra), Π extinction(),
- Voxel = MIPmaping = interp_{4Dlinear}(vars)
- SPH reconstruction = barycentric lin interp
- LODs
- fetch in maps (HR, spectra,...): lin or log or x?

then, integrals = MIPmapping

amplification and noise

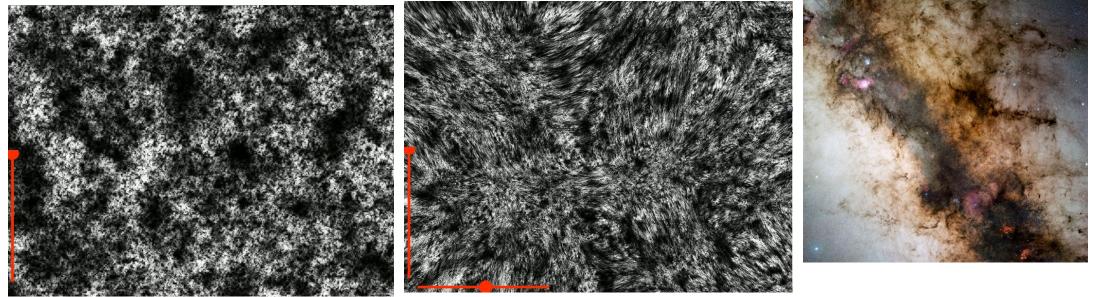
SPH simu: recons = smooth fields

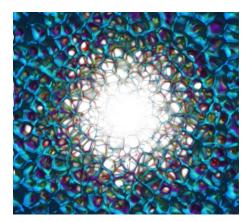
- *density continuum fluctuations*
- continuum to discreet (clusters of clusters, clusters, stars)
- dust clouds

o fractal, on large range of scales

o features at all scales (cloud, arms, plumes...)

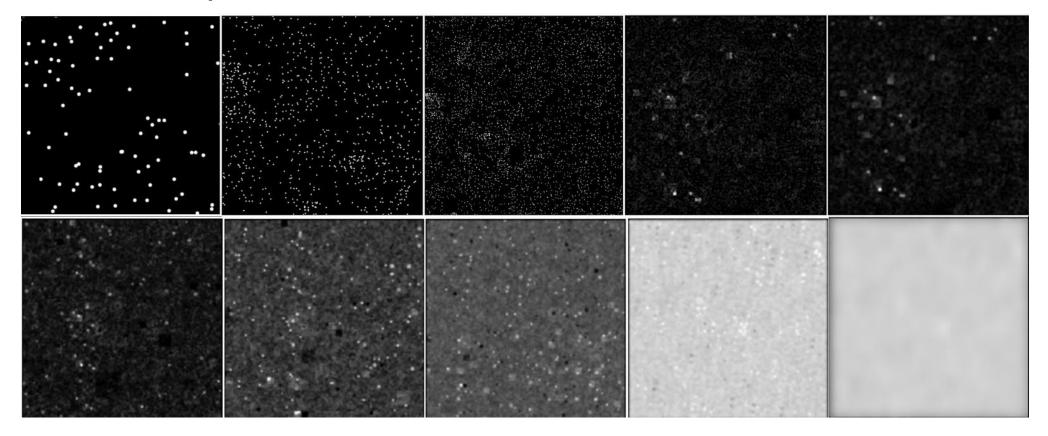
anisotropy


o shaped by stars (shockwaves, ionization, SN)



hierarchical autogravity collaps → *not fractal; multifractal*

 \rightarrow not Perlin- \sum ; Perlin- Π : $\Pi(1 + k. sBaseNoise(warp(2^{i}x)))$



Eulerian Poisson noise:

recursive top-down intervals

to be continued !